Top production asymmetry (A_{FB}, A_C) measurements at Tevatron and LHC

Chang-Seong Moon*
Université Paris Diderot-Paris 7/CNRS

SM@LHC, Freiburg 9-12 April 2013

Top A_{FB} @ Tevatron

- ✓ CP-even initial state at the Tevatron proton-antiproton $(p\bar{p})$ collider
- ✓ Top A_{FB} reflects the asymmetry in the top quark production angle in the $t\bar{t}$ rest frame.
- ✓ Top direction is measured with frameinvariant difference of the top and antitop quark rapidities, $\Delta y = y_t - y_{\bar{t}}$ where

$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$$

✓ FB Asymmetry is defined by

$$A_{FB} = \frac{N_{\Delta y > 0} - N_{\Delta y < 0}}{N_{\Delta y > 0} + N_{\Delta y < 0}}$$

✓ Anomalous A_{FB} could be an indirect indication of new physics.

Forward

Backward

Top A_{FB} in Standard Model

- ✓ LO only : No forward-backward asymmetry
- ✓ Inclusive NLO prediction (QCD+EWK) : $A_{FB} = 8.8 \pm 0.6\%$ *
 - Terms of order α_s^3 in the partonic cross section $d\hat{\sigma}(q\bar{q} \to t\bar{t}X)$
 - o Interference of the Born diagram with the 1-loop box and crossed box diagrams
 - o Interference of initial and final state radiation

^{*} W. Bernreuther and Z.-G. Si, Phys.Rev. D86, 034026 (2012)

Top A_{FB} in New Physics

- ✓ Presence of new physics could make asymmetry
 - Axial vector exotic gluon G' coupling
 - o Z' exchange
 - W' interaction
 - o Etc...

- ✓ Things to have to explain by BSM
 - ο Measured $t\bar{t}$ cross section (σ) and $d\sigma/dM_{t\bar{t}}$ are in good agreement with SM at Tevatron and LHC
 - \circ Tiny A_C at LHC and No other indications related to A_{FB}

Top ∆y asymmetry at Tevatron

- ✓ CDF l+jets(LJ) 9.4 fb⁻¹
 - \circ Observed A_{FB} = 6.6 ± 2.0%, Parton-level A_{FB} = 16.4 ± 4.5% [Just accepted for publication in PRD]
 - \circ Many various checks (dependence on kinematic properties, Angular cross section and Leptonic A_{FB}) done with full CDF data set.
- ✓ CDF dilepton(DIL) 5.1 fb⁻¹
 - Observed $A_{FB} = 13.8 \pm 5.4\%$, Parton-level $A_{FB} = 41.7 \pm 15.7\%$
 - o Working on the updated results with full CDF data set
- ✓ D0 l+jets(LJ) 5.4 fb⁻¹
 - Observed $A_{FB} = 9.2 \pm 3.7\%$, Parton-level $A_{FB} = 19.6 \pm 6.5\%$ [PRD 84, 112005 (2011)]
 - o Consistent with the CDF results. New results with full data set (9.7 fb⁻¹) will be updated soon.
- ✓ D0 dilepton(DIL) 5.4 fb⁻¹
 - o Leptonic A_{FR} result is published [PRD 87 011103(R) (2013)]

Mass and Rapidity dependence of Top A_{FB}

- ✓ Asymmetry linearly increases as a function of parton-level $M_{t\bar{t}}$ and $|\Delta y|$
- ✓ Slopes are 3σ from zero and $\sim 2.3\sigma$ from SM prediction

D₀ LJ

TABLE III. Reconstruction-level $A_{\rm FB}$ by subsample.

	$A_{ m FB}$ (9	%)
Subsample	Data	MC@NLO
$m_{t\bar{t}} < 450\mathrm{GeV}$	7.8 ± 4.8	1.3 ± 0.6
$m_{tar{t}} > 450{ m GeV}$	11.5 ± 6.0	4.3 ± 1.3
$ \Delta y < 1.0$	6.1 ± 4.1	1.4 ± 0.6
$ \Delta y > 1.0$	21.3 ± 9.7	6.3 ± 1.6

 \checkmark Larger A_{FB} for high different rapidities, while A_{FB} vs. Mass slowly goes up (but not Parton-Level)

$p_T(t\bar{t})$ dependence of Top A_{FB}

- ✓ NLO (QCD+EW) $t\bar{t}$ + Background prediction agrees with data in top pair p_T distribution
- \checkmark A_{FB} in the background subtracted data depends on the $t\bar{t}$ p_T spectrum
- ✓ The normalized shapes from Powheg(NLO) and Pythia(LO) describes well data, but the total asymmetry are not
- ✓ Reconstruction and modeling of the $p_T(t\bar{t})$ dependence of the asymmetry is robust, and that the excess asymmetry in the data is consistent with being independent of $p_T(t\bar{t})$

Lepton Asymmetry in tt Production

- \checkmark The generator-level distributions of qy_{ℓ} are shown in the left plot
- ✓ Leptonic A_{FB} kinematically correlated with top A_{FB} and manifestation of A_{FB} in the lepton from polarized tops.

$$A_{FB}^{l} = \frac{N_{l}(Q \cdot \eta > 0) - N_{l}(Q \cdot \eta < 0)}{N_{l}(Q \cdot \eta > 0) + N_{l}(Q \cdot \eta < 0)}$$

 \checkmark Reconstructed lepton η is systematically unencumbered

Lepton Asymmetry at Tevatron

- ✓ D0 LJ 5.4 fb⁻¹ [PRD 84, 112005 (2011)]
 - Observed $A_{FB} = 14.2 \pm 3.8\%$, Parton-level $A_{FB} = 15.2 \pm 4.0\%$ (SM Prediction: 4.7 ± 0.1%)
- ✓ D0 DIL 5.4 fb⁻¹ [PRD 87, 011103(R) (2012)]
 - \circ Observed A_{FB} = 3.1 ± 4.4%, Parton-level A_{FB} = 5.8 ± 5.3% (SM Prediction: 4.7 ± 0.1%)
- ✓ CDF LJ 9.4 fb⁻¹ [CDF Public Note 10975]
 - Observed $A_{FB} = 7.0 \pm 2.2\%$, Parton-level $A_{FB} = 9.4^{+3.2}_{-2.9}\%$ (SM Prediction: 3.6 ± 0.2 %)

Top A_{FB} in Angular $t\bar{t}$ cross section

- ✓ Top AFB in the differential cross section, $d\sigma/d\cos\theta_t$ where θ_t is the angle between the top quark momentum and the incoming proton momentum as measured in the $t\bar{t}$ center-of-mass-frame
- ✓ Characterize the shape of $d\sigma/d\cos\theta_t$ by expanding in the Legendre polynomials

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta_t} = \sum_{\ell} a_{\ell} P_{\ell}(\cos\theta_t)$$

✓ where P_{ℓ} is the Legendre polynomial of degree ℓ , and a_{ℓ} is the Legendre moment of degree ℓ

ℓ	$P_\ell(x)$
0	1
1	x
2	$\frac{1}{2}(3x^2-1)$
3	$\frac{1}{2}(5x^3-3x)$
4	$\frac{1}{8}(35x^4-30x^2+3)$
5	$ \frac{\frac{1}{2}(3x^2 - 1)}{\frac{1}{2}(5x^3 - 3x)} $ $ \frac{\frac{1}{8}(35x^4 - 30x^2 + 3)}{\frac{1}{8}(63x^5 - 70x^3 + 15x)} $

Top A_{FB} in Angular $t\bar{t}$ cross section

- ✓ The signal+background model generally performs well, except for the presence of a A_{FB} in the data that is not modeled by our signal MC
- Integrating the Legendre series over finitewidth bins gives the fraction of cross section in each bin of $\cos\theta_t$. Uncertainties are highly correlated and are dominated by the large uncertainties on the higherorder moments

Top A_{FB} in Angular $t\bar{t}$ cross section

1.0

0.5

Top A_C @ LHC

- ✓ At LHC, the top quark pairs are produced through gg fusion (~80%) and qq hard collisions (~20%)
 - o qg partonic processes is almost negligible
- ✓ Tiny NLO QCD effect: $A_C = 1.15 \pm 0.06\%$ *
 - \circ Challenging to measure. Only ~10% A_C expected from A_{FB} at Tevatron.
- ✓ Symmetry of the incoming beams, an asymmetry based on the Δy variable would vanish. $\Delta |y|$ or $\Delta |\eta|$ is chosen

$$\Delta |y| = |y_t| - |y_{\overline{t}}| \quad \Delta |\eta| = |\eta_{l+}| - |\eta_{l-}|$$

✓ The charge asymmetry is defined by

$$A_C = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$
 for lepton+jets channel

$$A^{u}_{C} = \frac{N(\Delta|\eta| > 0) - N(\Delta|\eta| < 0)}{N(\Delta|\eta| > 0) + N(\Delta|\eta| < 0)} \quad \text{for dilepton channel}$$

^{*} J. H. Ku hn and G. Rodrigo, JHEP 1201 (2012) 063

Top $\Delta |y|$ asymmetry at LHC

✓ No significant deviation from SM prediction for ATLAS and CMS (LJ and DIL channel)

ATLAS lepton+jets results

✓ No sign of asymmetry as a function of $M_{t\bar{t}}$

CMS lepton+jets results

- ✓ Measured $A_C = 0.004 \pm 0.010_{(stat)} \pm 0.011_{(syst)}$
- ✓ Mass dependence : A_C increases as a function of $M_{t\bar{t}}$
- ✓ Rapidity dependence : No sign of A_C increase as a function of $|y_{t\bar{t}}|$
- ✓ A_C depends on p_T of the $t\bar{t}$ system

ATLAS dilepton results

Lepton charge asymmetry

 $A_{\rm C}^{\ell\ell} = 0.023 \pm 0.012 \, ({\rm stat.}) \pm 0.008 \, ({\rm syst.})$

SM Prediction: $A_{\rm C}^{\ell\ell} = 0.004 \pm 0.001$

Top-quark charge asymmetry

 $A_{\rm C}^{t\bar{t}} = 0.057 \pm 0.024 \, (\text{stat.}) \pm 0.015 \, (\text{syst.})$

SM Prediction: $A_{\rm C}^{t\bar{t}} = 0.006 \pm 0.002$

✓ Consistent with SM for all dilepton flavor in the uncertainty.

CMS dilepton results

Conclusion

✓ Top A_{FB} still there at Tevatron

- o Many various experimental checks are done by CDF and D0
- Inconsistent with SM calculation
 - The Top asymmetry grows as a function of $t\bar{t}$ mass and rapidity
- Found an anomalously large linear term in the moments of the angular differential cross section
 - The A_{FB} is dominated by this linear term
- More data will be analyzed by D0 and CDF DIL channel

✓ LHC does not see A_C but not quite sensitive yet

- Top charge asymmetry in lepton+jets and dilepton channel and the lepton-based asymmetry measurements by ATLAS &CMS
- Both inclusive and differential measurements have been performed
- \circ The issue is hard to be settled directly for a while. But direct searches for $t\bar{t}$ resonances/etc could probably settle this with LHC 8TeV data
 - The "best" surviving NP model is a light axigluon M ~ 200 GeV

Backup

Covariance matrices for $A_{FB}(|\Delta y|)$ and $A_{FB}(M_{t\bar{t}})$

Eigenvalue λ	0.0293	0.00734	0.000721	0.000497
$ \Delta y < 0.5$	-0.062	0.376	-0.921	-0.080
$0.5 \le \Delta y < 1.0$	0.033	0.838	0.300	0.455
$1.0 \le \Delta y < 1.5$	0.471	0.347	0.179	-0.791
$ \Delta y \ge 1.5$	0.880	-0.191	-0.171	0.401

Eigenvalue λ	0.0431	0.00158	0.00441	0.0105
$M_{t\bar{t}} < 450 \text{GeV}/c^2$	-0.019	-0.753	0.641	-0.151
$450 \text{GeV}/c^2 \le M_{t\bar{t}} < 550 \text{GeV}/c^2$	-0.009	0.612	0.597	-0.519
$550 \text{GeV}/c^2 \le M_{t\bar{t}} < 650 \text{GeV}/c^2$	0.419	-0.223	-0.431	-0.767
$M_{t\bar{t}} \ge 650 \text{GeV}/c^2$	0.908	0.094	0.218	0.346

A_{FB} at Tevatron vs. A_C at LHC

